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1. Introduction

Parabolic approximations to the reduced wave equation have been used
extensively in acoustic propagation since the early 1970°s [1] and in
electromagnetics even earlier [2]. The advantage of a parabolic equation (PE)
is that the solution can be marched forward in range; the field at a given range
r, is not dependant on the field at ranges » > r,. In contrast, the reduced wave
equation is elliptic, so the field at range r, is dependant on the field at all other
ranges. This requires solving a large set of simultaneous equations, a much
more demanding problem computationally.

Various PEs have been implemented numerically using finite-differences,
finite-elements, and a Fast Fourier Transform (FFT) based method known as the
split-step PE. The split-step PE has a significant advantage in that the range
step typically is on the order of tens of wavelengths as opposed to tenths of a
wavelength for the finite-element and finite-difference models. This makes the
split-step much faster, usually by at least one order of magnitude.

The underwater acoustic community was the first to apply the PE, including the
split-step, to the acoustic propagation problem. The biggest problem faced in
adapting the underwater models to the problem of atmospheric propagation is
accommodation of the air-ground boundary. The Green’s function parabolic
equation (GFPE) [3] is the first split-step PE to include a complex-impedance
surface. The purpose of this report is to present a theoretical development of
PEs in general, culminating in a detailed description of the GFPE. It brings
together theory from a number of sources in a cohesive manner with consistent
notation. It is the first in a series of three reports on the GFPE. The second
report, A Sensitivity Study of the Green’s Function Parabolic Equation,
examines the sensitivity of the GFPE to the input parameters and presents an
approach to the automated selection of several of the parameters based on the
sound speed profile. The third report, 4 Users Guide to the Green’s Function
Parabolic Equation, gives a brief review of the first two and describes the user
interface from a more user oriented, less theoretical point of view.

Section 2 derives the reduced wave equation, the starting point for parabolic
approximations. Section 3 presents the original narrow-angle PE, followed by
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a discussion of the general split-step approach and some wide-angle
approximations. Section 4 applies the split-step technique to the problem of the
air-ground interface, leading to the GFPE. Section 5 gives examples of the
output of the GFPE, along with some comparisons to another outdoor sound
propagation model, the Fast Field Program (FFP).




2. The Reduced Wave Equation for Acoustic Propagation

Begin with two conservation equations from fluid mechanics: the conservation
of mass,

9 , V-(pV) = 0, (D
ot

and the conservation of momentum, neglecting viscosity”,

ﬁ(pV) + VP =0 ()
ot

where

p = the density of the fluid
P = the pressure
V' = the fluid velocity.

Each is, in general, a function of position and time. Furthermore, P is assumed
to have some functional dependance on density and entropy S,

P = P(p.S). 3)

Acoustic disturbances modeled by PEs involve very small fluctuations from
ambient levels, so the following assumptions are made:

p=py+p,P=p,+p, 4)

“For the acoustic phenomenon discussed here, the effects of viscosity are negligible.
In a more general setting, viscosity may be important.




with
/ N
1o P gy 5)
Po Py

The primed variables are the acoustic fluctuations, while the subscripts indicate
ambient quantities. Note that the total velocity is assumed to be small. The
PEs discussed here assume an ambient wind velocity of zero. Inserting
equation (4) into the conservation laws and neglecting products of small
quantities yields the linearized conservation laws

Gp/ —
= + p V'V =0 (6)
ox  Po
and
ov ,
L+ w =0 @)
Po—, 4

Small amplitude sound propagation is generally isentropic, so that

P = P(p). (8)

This can be linearized around the point p,,

©)

Equations (6), (7), and (9) can then be solved for p/, resulting in the acoustic
wave equation

18" (10)

V2p/ _
c? ot

where

¢ = ¢(x) = the sound speed.




The next step is to assume a source periodic in time, with angular frequency ©.
This can be expected to give pressure fluctuations of the form

plED = p(®e ™, (11)

so that p satisfies the reduced wave equation

Vi + k% =0, (12)

where
k= olc.

Using cylindrical coordinates (figure 1) and assuming the pressure field is
independent of 6 leads to

Fp , 1 , Ip

+ k*p = 0. (13)
o2 ror 32

r
j B

Figure 1. Cylindrical
coordinates used by the PE.
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It is well known that a cylindrical wave decreases in amplitude as 2. To
separate this cylindrical spreading loss from other effects, define u by

1
-4 4
prd) = 1 u(r). {4
Then u satisfies the reduced wave equation
@+@+(k2+_l_)u:0, (15)
or*  dz? 4r?
Finally, assume (k7)°> 1, which gives rise to
Pu, Pu 0 g (16)
or?  9z?

Equation (16) is the reduced wave equation describing acoustic propagation far
from the source. It is the starting point for the parabolic approximations of the
following sections.



3.1

3. An Overview of Parabolic Approximations

In the development that follows, the wavenumber £ is assumed independent of
r, but is allowed to vary with z. In practice, parabolic models are used in
weakly range dependant environments. In that case, some of the results below
become approximations rather than exact representations. This is pointed out
where it occurs. It turns out that the approximations are generally good, and
the models yield good results if the range dependance is not too drastic.

The Narrow-Angle Approximation

The first use of a PE for acoustic propagation was that of
Tappert and Hardin [1], who invoked the restriction to narrow propagation
angles. Their model is presented in this section.

Begin by expressing u as the product of a horizontal plane wave of
wavenumber k, and an envelope ‘F,

u(rz) = P(rz)e™ (17)
where
k, = o/c, for some reference sound speed c,.

Note that ¥ = |u| only when k = k,, which can only occur in a homogenous
medium. Substitution of this into the reduced wave equation (16) yields

az_q,. + 2lkoa_lP + ﬂ

+ (k2 - )Y = 0. (18)
or? or a2

This can easily be made into a PE by omitting the second partial derivative of
¥ with respect to r,

2ikoaa—lII + ik 4

+ (K2 - kDY = 0. (19)
r az%

11
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But when, if ever, is this justified? A sufficient condition is
CEapyai 4l (20)
or? or

For a homogenous atmosphere of wavenumber k,, this can be interpreted via
the Fourier Transform pair at a given » = r,:

u(r,2) - 51; [ atrok)e* dk, 1)

and

[

a(rk) = f euirkzu(r,z)dz. (22)

—c0

Equation (21) can be viewed as a superposition of plane waves of
wavenumber k,,

1 wA ik, Ar + k2)
u(r,+Arz) = py fw U(ro.k,)e dk,, (23)
where
kr.? 4 kZZ — ko_?
Ar = 0.

For nonzero Ar, this represents propagation of u to »r = r, + Ar in a
homogenous medium of wavenumber %,. #(ry,k,) is the amplitude of the plane
wave component whose angle of propagation 0 satisfies

k
cosf® = —. (24)

0




3.2

See figure 2. In terms of the envelope, this becomes

P(r, + Ar,z) = f B (rp k) e TN T KA gy (25)

Figure 2. Wavenumbers and

propagation of plane wave
components.

Applying the sufficient condition of equation (20) with respect to Ar gives rise
to |k, - ky| <k, o1

cosO = 1, (26)

hence, the name narrow-angle approximation. In the case of a nonhomogenous
atmosphere, the wavenumber variations will introduce wavefront perturbations
so equation (25) does not apply. However, in most cases, the perturbations are
very small and the wavefronts are still locally approximately planar. Thus,
equation (20) is still roughly satisfied by the narrow-angle condition of
equation (26). More is said about this in sections 3.3 and 3.4.

Operators and the Split-Step PE

A more general approach to the PE involves approximations of a certain
differential operator, which will be considered next. But first, it is interesting
to observe that the term PE is really a misnomer, because most of the operator
approximations result in equations that are not parabolic. However, this paper
follows custom and continues to use the name parabolic for equations in this
class. Also, be aware that frequent use is made of various representations for

13
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functions of an operator, without mathematical justification. The formal
manipulations are well defined, and the results are valid only for operators
satisfying certain unstated conditions. No attempt is made to prove the
operators involved satisfy necessary or sufficient conditions. The ultimate
Justification is empirical; the final results agree well with experimental data and
other models.

Begin by expressing equation (16) in operator notation,

[f%+%@u:a @7)
s

0-n+ 1% (28)

n = k/k, = the acoustic index of refraction.

Because £, and therefore 7, is independent of 7, equation (27) can be factored
as follows:

e—+zfy - iky/Q) u = 0. (29)

The left and right factors represent inwardly and outwardly propagating waves,
respectively. If k depends on 7, the partial derivative with respect to » does not
commute with 0, so the factorization is only an approximation.

Interest is in the waves propagating outward from the source, so only the right
term is considered,

4 ik /O (30)




The formal solution to this equation is [4]

u(r+Arz) = eiArk"‘/au(r,z). B1)
Note the similarity to the ordinary differential equation
& (32)
dt
which has the solution
x(t+ty) = e* x (2. (33)

The difference of course is that the exponential on the right side of
equation (31) is a differential operator. The essence of the split-step technique
involves approximations of the square root

Q=+ Loy
ko 92° (34)
(e
where
e = n*-1 (35)
b - igf:—z (36)

The general technique is to linearly separate, or split the operators u and € as

VO = @ = Aw) + B, 37)

15
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3.3

then write

LAr .Ar
iArk i= kA jark B koA 38
AT RVQ T ATk R (38)

The symmetric splitting of the exponential is exact only when 4 and B
commute, which will not occur if & varies with z. However, it may still prove
to be a good approximation, as is discussed in the next section.

This split-step operator has a simple interpretation. A is independent of € and
therefore », so the exponential terms in A4 represent propagation through a
homogenous atmosphere. All of the variation in » occurs in the exponential
term containing B, and B is a multiplicative operator. Thus, the operators in
equation (38) represent propagation through a homogenous atmosphere a
distance of Ar/2, followed by a multiplicative phase correction caused by
variations in k, followed by another propagation through a homogenous
atmosphere a distance of Ar/2.

In practice, split-step PEs are usually implemented using a nonsymmetric
splitting,

IV RIS RS (39)

The field is initially propagated through free space a distance of A»/2 and then
alternately phase corrected and stepped forward by Ar. It turns out that the
error caused by noncommutativity of 4 and B is reduced by using a symmetric
splitting [5], but past the first A»/2 step, the symmetric and nonsymmetric

. Ar . Ar
kOA ZTkOA 17k0A

.. . iA .
splittings yield the same result, because e’ e . The real issue

is the approximation of the operator ,/Q .

Some Wide-Angle Approximations

Several approximations have been discussed in the literature [6,7,8]. One
consists of taking the linear terms in the formal series for the square root of
1+ x.




0=y =1+ e+ (40)

Another approximation, originally suggested by Tappert [6], is
1
JO = @; = (1 + p)? + %e (41)

This will be referred to as the GFPE approximation because it is used by
Gilbert in the GFPE discussed in the next section.

The wide-angle approximation of Feit and Fleck [7] 1s

(SR I

(42)

JO = @, = (1 + p)? + (1 +e?-L

These approximations require different restrictions on € and p. Intuitively, it
is necessary to consider the "magnitude" of these operators. However, the usual
operator norm,
|4l = sup |Aul, (43)
jul =1
will not work. Because u is unbounded, the supremum is c. Instead, as an
angle-dependant measure of the magnitude of 4, define

Il = |Aul, (44)
where u is restricted to unit amplitude plane waves u =/ of wavenumber
ki = k? + k7 and propagation angle 6 (tan 6 = kJk,).

Note that
Il = sin’6, (45)

so p is small exactly when 0 is. Also, |€| <1 is equivalent to #° ~ 1, or k ~ k.
One would expect that the first approximation (equation (40)) applies for small
u and €, and these are precisely the conditions used for the narrow-angle PE of

17




18

section 3.1. It is not difficult to show that equation (40) results in the
narrow-angle PE.

More careful analyses of these approximations can be made following
Thompson and Chapman [8]. Define the error operators

EN = (I)?‘V -Q = %(62 + €L + pE + pz), (46)
3 3 47
Eg= @5 -Q=-elle -1+ el + w2+ +pl (*47)
and
2 3 3 3 (48)
Ey=0,-Q=2[1-n-0+p?l+nl~+p’+0~+pyn
Let n = 1 + on, and treat é» as a constant. Then
1 . in202 49
IExle < S[18n]2 + |dn]) + sin®6P, (49)
[Egle < 518n[@ + [3n)[|dn|@2 + |8n]) + 4[cosB-1]], (50)
and
IE g < 2|81 |cosB-1]. (51)
Figures 3 through 6 show the error bounds as a function of 6 and on,

normalized by

IQl, = (1 + 8n)* - sin®0. (52)

Figures 3 and 4 vary 0 for constant 6n of 0.01 and 0.1, respectively. Note that
for 6 = 0, the wide-angle approximation is exact, while the other bounds are
nonzero. As 6 increases beyond about 20°, the error bound of the narrow-angle
approximation begins to climb rapidly. @ The GFPE and wide-angle




approximations are seen to be valid for larger 0, the difference between the two
being the constant bias. Thus, these approximations are considered wide angle.

Upper Bound on Relative Error, §n=0.01
0.08 — : .
. 006F w ;A
& .
R E
S G J
g 0.04F .. E_ .
v&a
S .
& 0.02F 1
0.00 : e
0 10 20 30 40
Angle (degrees)

Figure 3. Relative errors as a function of 6§ for
éon = .01. E, is wide angle, E; is GFPE, E is narrow

angle.
Upper Bound on Relative Error, §n=0.1
0.14 : , — : . :
0.12 } 1
! —_— EW
5 010+ P
= S — E R
D 0.08 - G PR
o r . A
> e E . L
& 0.06 | N T
= L A
Y 0.04} ; -
e I
0.02 P .
0.00 - L - ' -
0 10 20 30 40
Angle (degrees)

Figure 4. Relative errors as a function of ¢ for én = .1.
E,, is wide angle, E. is GFPE, E is narrow angle.
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Figures 5 and 6 show the normalized errors as a function of &n, for constant 6
of 20° and 40°, respectively. The narrow-angle approximation is seen to have
a nonzero bound for 6n = 0, while the other two are exact. n = 0.1 represents
a sound speed variation of approximately 30 m/s, which is larger than almost
any variation encountered in the surface boundary layer. Thus, the wide-angle

and GFPE approximations are again seen to be good up to a propagation angle
of 40°.

Upper Bound on Relative Error, 6=20 degrees
0.03 - T l T ‘
E
5 " o
2 002F E PR
&4 G -
] -
2z T Ey 7
= T
= 0.01F T 7
m - //////
OO ! " 1 " X 1
8.00 0.02 0.04 0.06 0.08 0.10
on

Figure 5. Relative errors as a function of én for § = 20. Ey
is wide angle, E is GFPE, Ey is narrow angle.




Upper Bound on Relative Error, 6=40 degrees
0.12 - T " T ~ T -

o o e |

0'08 .,.—.,.‘.4., ,A,.,,—,,. ”-

0.06

0.04

Relative Error

0.02

O'0(()).00 T 0.02 T 0.04 0.06 0.08 0.10

on

Figure 6. Relative errors as a function of én for § = 40. E,
is wide angle, E; is GFPE, E is narrow angle.

McDaniel [9] studied the error associated with the narrow-angle approximation
by applying separation of variables to the reduced wave equation and the
narrow-angle PE, equation (19). The normal modes for the reduced wave
equation in the far field are

1

r )Eeik"Arpn(r,Z), (53)

r+ Arz) =
p,( )=

while the far field normal modes for the PE are

2 2
k. + Kk
i OAr

2k0 pn(r’z)‘

(54)

1

R
)

r + Ar

pn(r + Ar,z) = ( e

In both cases, k, is the separation constant, determined by the boundary
conditions on the z-dependant equation. This equation is identical for the
reduced wave equation and the PE. Thus, the PE is seen to posses a phase
error, resulting from the wavenumber
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3.4

2 2
Y - ky + ko, (55)
” 2k,

where k, is the correct wavenumber obtained from the reduced wave equation
solution. This results in a phase velocity error in the time-dependant solution

/I 2 1 1 -1 -
¢, = c—(—2 + —2) (56)
o ¢, ¢

where ¢, = the correct modal phase velocity for the wave equation. This error
is the result of the narrow-angle approximation; it is not a numerical error
associated with any particular numerical implementation technique. The
wide-angle and GFPE approximations can be expected to introduce some phase
errors as well, although quantitative analyses of these errors are more difficult.

Implementation Via the FFT

Having considered the error associated with the wide-angle approximation @y,
it remains to implement it in a computationally fast algorithm. The key is to
observe that for € = 0, @y, gives an exact solution to the Helmholtz equation
with constant wavenumber %, Recall that with the nonsymmetric splitting,

u(r + Arz) = emrk"mu(r,z) - eiArkoBeiArkoAu(r,z), (57)
where
A =41 + p for @y
B=4y1+e€~-1=n-1 for ®.
Thus, when e =0, (n = 1)
ulr + Arz) = eimk"‘/au(r,z) = " ur ) (8)

describes ons-way propagation through homogenous space. Section 3.1 shows
that this ca:: be represented by



_ 1 " itk Ar + k,2)
u(ry + Ar,z) = 5 _fm d(ryk)e dk,, (59)

where

i = the Fourier Transform of u with respect to vertical
wavenumber £,
kZ+ k7 = k.

But this also represents the inverse Fourier Transform of the quantity

. 2,2
fe VR Thus, for the wide-angle PE, the homogenous propagation is

expressed as

. . 2 2
elArkoALL(r,Z) _ ej@-]:zl[elAr\/ko - kz.g;/u(r,zl) ] , (60)
where
&, = the Fourier Transform operator with respect to z

the associated inverse transform.

9
Il

Inclusion of the phase correction term for a nonhomogenous atmosphere yields

2

iArk,B iArk,A
ez rk, ez rky u(r,z)

iArky(n - 1) o-1c iArfke - K
_ ez rky(n )g—kz [el n/ky Z,z/u(r,z/)] .

u(r+Ar,z)

(61)

This is the wide-angle split-step PE. The Fourier Transforms are implemented
via an FFT, which can be computed with speed and efficiency using one of the
widely available power-of-two algorithms. In practice, the range steps are
several wavelengths long, in contrast to finite-element and finite-difference
techniques that use range steps much less than a wavelength. The combination
of long range steps and FFT is what makes the split-step PE so fast.
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Notice that no explicit mention of boundaries such as the ground or water
surface has been made. In general, integral transforms are applied so as to
explicitly represent the boundary conditions. For the present problem, that
would require a transform with respect to range r, so that the boundary
condition would be translated to U(k,,z). Instead, the split-step PE applies the
transform with respect to z, so that the boundary no longer exists in the
wavenumber domain. Thus, the boundary conditions can not be accounted for
explicitly; they actually become conditions on the symmetry of G(r,k,).

A condition which can be incorporated is that of a pressure release surface,
u(r,0) = 0. In this case, the function u can be defined for z < 0 by u(r,z) = -
u(r,-z), which forces the pressure release condition. Then the transform is
defined for all z, eliminating an explicit boundary condition. This is the
method of images, modeling the reflected waves as direct waves propagating
upward across the z = 0 boundary. The reflection coefficient is R =- 1.

Of course, the FFT imposes two boundary conditions, because the transform
must be finite in length. The lower boundary can be treated as a pressure
release surface by exploiting the relationship between symmetries in the two
domains; the reflected spectrum is -1 times the mirror image of the direct
spectrum. Because of the periodicity induced by the FFT, this will result in a
pressure release surface at the other boundary as well. The unwanted
reflections from this surface can be attenuated by introducing an artificial
absorption layer near the upper boundary. Care must be taken not to attenuate
refracted sound which may reach the detector.

This model works well for underwater acoustics, where it has been used since
the early 1970’s. The air-water interface is a pressure-release surface (at least
for smooth surfaces), and the ocean bottom is generally a thick layer of
sediment that strongly attenuates sound with little reflection. However, this is
not the case for outdoor sound propagation, as the ground generally is neither
a pressure-release surface nor a thick attenuating layer. Thus, the split-step PE
needs a formulation that explicitly accommodates more general boundary
conditions.




4. Complex Ground Impedance and the GFPE

Reflections from the ground can have a significant effect on the propagating
wavefield. Multiple reflections in a downward refracting atmosphere can result
in propagation to very great distances. Coherence effects between direct and
reflected wavefields can produce interference patterns. To incorporate these
effects into a model, it is necessary to accurately represent the ground
interaction.

In many cases, the ground can be modeled as a locally reacting surface, using
a complex surface impedance [10]. The impedance can easily be incorporated
into finite element and finite difference PEs, but the wide-angle split-step PE
incorporates only a pressure-release surface, as discussed above. The advantage
of the GFPE, as shown below, is that it incorporates a complex-impedance
surface, while still allowing implementation via an FFT for speed. It is the
combination of these two features that distinguishes the GFPE from previous
implementations.

4.1 The Split-Step Approximation

The starting point is again the outgoing component of the reduced wave
equation (16),

8_ = iky/Qu, (62)

Q=—— +n- (63)

The vertical dependance on height is characterized by
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k() = kS + 8k (2), (64)
where the perturbation 6k°(z) is assumed small,

2
E%M<L (65)
kO

In terms of » and ¢, this becomes

=1+ % 146 (66)

The GFPE 1s a split-step PE with the approximation @, discussed above,

ki 0z° 2k;

[SEFE

JO = (1 + p)

A nonsymmetric splitting is used, giving rise to the formal solution

. . Ak _ 68
ur + Arz) = 0P yr ) = o % e’A'%@u(r,Z), (©%
where
1
A-a-L%p /5 (69)
2 97

0

As with the wide-angle split-step PE, this solution first propagates a distance
Ar through a homogenous atmosphere of wavenumber %, and then applies a
phase correction for the nonhomogeneous wavenumber variations. Note that the
wide-angle PE and GFPE use the same operator for the homogenous
propagation. The distinguishing feature of the GFPE is its incorporation of a




4.2

complex impedance boundary condition. To do this, a spectral representation

A rkox/a

is employed to express e’ u as the integral of a Green’s function.

The Spectral Representation of an Operator

The spectral form for a function of an operator 4 is [4]

) = 2§ T - AT, (70)
2miy,

where
C = the boundary of an open set containing the spectrum of 4.

The spectrum is defined so that the operator [x/ - 4] is invertible and bounded
everywhere on C and in the region bounded by C. In the present case, the

function is fix) = eiArk‘“/a, giving rise to
" s, P (71)
2mis,

The change of variables x = k,/k,’ leads to

eV = LA oy 201k, dik, (72)

TEZC/

This is an operator, and its action on i, eiA"/a u, may be found by bringing u
inside the integral,

"z = LE MR - RO ) k, dik, (73)
U1

C/

Observe that the integrand is no longer operator valued. Defining the
function ¢ as

bk,r2) = [T - k3Ol u(r,z) (74)
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leads to

RUNCH ) = i fe ik,Ard)(k,,r,z) k dk . (75)
T

C

In terms of the definition of Q, the integrand ¢ satisfies the equation

&

-+
922

2
( k) ok, r2) = -u(rz), (76)
with k> = k7 - k*. This can be solved via a Green’s function G(k,,z,2"),

$k,,r,z) = f Gk, 2,z Yu(rz’) dz’, (77)
0

where G satisfies

&+ )G ,22h - -5 - . 78)
oz?
All together,
eiA'k‘“/—Q:u(r,z) = ;t%feik’A ’ f Gk 22 u(rz’) dz'k dk,. (79)
o 0

The next step is to solve for the Green’s function, incorporating the complex
impedance boundary condition.

Incorporation of Complex Ground Impedance

The particular form of G depends on the choice of boundary conditions for
equation (78). In general, solutions contain direct and reflected terms like

ik Z . o .
¢ %2 , where Z(z,z') is a piecewise linear function such asz + z' or |z-z’|.

Thus. equation (79) constructs the field as a superposition of plane wave
components




¢ ik, Ar + kZ(z,2 "] (80)

The correct boundary conditions for equation (78) are a radiation condition for
large z and the surface boundary condition at z = 0.

In general, the surface boundary condition can be quite complicated, describing
nonlocal interaction between the air acoustic waves and the ground. A plane
wave impinging upon the surface at one point can induce a surface wave that
may interact with waves at another location. In many cases, the surface can be
modeled as locally reacting. In this case, plane waves incident upon the surface
are strongly refracted, so the transmitted energy propagates nearly perpendicular
to the surface, producing only local interaction. The boundary condition for
this type of surface can be described using surface impedance.

The surface impedance is defined as

7z = -P_ (81)

where
p' = the acoustic pressure at the surface
V. = the outward component of acoustic velocity normal to the surface.

Because the pressure and velocity may not be in phase, Z is generally complex.
When the surface is the ground, it is referred to as the complex ground
impedance. There are many models available to estimate the ground
impedance [10,11]. While many models are based on physical principles, most
are somewhat phenomenological or empirical.

Boundary conditions for a differential equation such as equation (78) are
generally specified as

a 0G(r,z)

28+ b6 = 0, (52
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4.4

where a* + b®> > 0. Using the linearized conservation of momentum
equation (7) and the definitions of Z in equation (81), p in equation (11), and
k, = w/cy, the vertical momentum equation becomes

/ oV /
P’ T Podp o 0P ik Py, (83)

This applies to the Green’s function G, which represents acoustic pressure. In

VA e
terms of the dimensionless quantity Z, = —p_c’ the boundary condition is
0
%G L ilg -0, _, (84)
oz .

The resulting Green’s function is

Glkzz') = fz”l/?[eikZIz "2l Re)e™E T, (85)
Z
where
kZ -k
Rik) = Lo~ (86)
kng + ky

is the plane wave reflection coefficient. Substituting this Green’s function into
equation (79) gives

iArkO\/a 1 ik Ar ik |z - z g
e u(r,z — —
D) = — 3C§ f [ &%)

ik(z +

+ R(k)e 2 ] u(r,z’) dz'k dk..

Implementation Via the FFT
The final goal is to implement the GFPE via an FFT, as with the wide-angle

split-step PE of section 3. Thus, it is necessary to manipulate equation (87)
into the form of a Fourier Transform with respect to z, followed by a




multiplication, followed by an inverse transform with respect to a vertical
wavenumber. The Green’s function is already expressed in terms of z and £,
but the contour integral is with respect to horizontal wavenumber £,. Thus, it
is necessary to introduce an integration with respect to vertical wavenumber and
perform the horizontal wavenumber integration.

Therefore, consider the integral

" ik - 2)
I i (88)
2TE K2 _ kzz

which can be evaluated using the method of residues. The standard technique
is to integrate around a closed contour C, in the complex plane consisting of the
interval [-a,a] along the real axis and a semicircle of radius a in the upper or

lower half plane (@ > 0). The choice of half plane is made to ensure that the
integral along the semicircle approaches zero as a—. Then

® i@ - 7)) ix(z - z)
1 € Tdk =+ hm—Lf £ ik (89)
2w K2 - kZZ g 2T K - kz2

—0o0

By the residue theorem, the integral on the right side is simply 2wi2. (residues
of poles inside C,), which in the limit includes all poles in the associated half
plane. The sign on the right side of equation (89) depends on which contour
is used. The residue theorem requires that the contour be traversed in a
counterclockwise direction. If C, is chosen to fall in the lower half plane, the
interval [-a,a] is traversed from a to -a, so the negative sign must be used.

To avoid poles on the real axis, &, is taken as complex with imaginary part
&> 0. This corresponds to absorption, which reduces the amplitude of a
propagating waveform by €®. The poles of the integrand occur at * k,, with
one in the upper half space and one in the lower half space. Thus, only one
will be enclosed by C,. For the case z - z'> 0, the contour must fall in the
upper half plane, and the resulting residue is
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LIRS JUACEES
(k - kz)“2—*—2lk kT T (90)
k k i

z <

When z - z' < 0, the contour must be in the lower half circle, and the residue
there is

eik(z - Z) e—ikz(z - Zg) (91)
k+k)y——| _ , = ——.
( Z) k2 _ kz2 lk =k _2kz
Thus,
© ix(z - /) ; . .
1 f e z dc = L klz-2l (92)
2T Ve K2 - k22 2kz
Similarly,
” ix(z + ) ; e u -ipz + ')
L RS dc = LRape D - 2ipt T (93)
2n Y K+ kZ2 2k B2 - kf
where
k,
p =2 (94)
Z,

In this case, the contour must always be chosen in the upper half plane because
the argument of the exponential is always positive. The reflection coefficient
introduces the extra pole at -B, which will fall in the upper half plane because
of the nature of Z,.

Using equations (92) and (93), the Green’s function may be written as




o

5 A
t lK +
eKZ Z) Z Z)

N —
glezz) = —— 7 dx + — f Rx)E > dk
- -k ¥ -k (95)
_ emibe )
+ 2ipE—rn,
2
B° -k,

the integrations over height z and vertical wavenumber k necessary for forward
and inverse Fourier Transforms,

m(z )

ezArko\/_u(r,z) _ 1f ikArk dk f[___f 2dK
Tl 2 - k; (96)
nc(z+z) -th+z)
fR(K) dx + 21[3—--—]u(r,z’) dz’.
. B2 - K

Exchanging the order of integration gives equation (97) for the homogenous
propagation term:

iArk,/O 1 " 1 AT
e " ulrn) = — fe"‘zdlc —f k dk, f ~iz u(r,z/) dz’
2n T2~ 2

pa

1 o0 i 1 elk,Ar L , ,

— f eKZdKR(K)—_f k dkrfe"‘z u(rz')dz' (97
2n Y T2 - k2T Ty

Z

+

. 1 ik Ar
2ipe ¥ — [

2
mCBZ "kz

4

+

kdk, [ e u(rz’)dz’.
0

The Fourier Transforms are clearly visible in the first two lines. The first line
represents the direct wave, and the second line is the reflected wave. The third
line represents the surface or creeping wave [12]. The homogenous phase
multiplication can now be simplified by performing the contour integral
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P

L/ k dk. 98)
Tl K2

k;
The residue theorem is used again, and the poles are determined by recalling
that k,” = k,? - k°. The denominator is then k2 - (k,? - k%), with zeros

k =t kg - & (99)

At this point, it is necessary to determine whether the poles fall in the spectrum
of 0. For the moment, assume that the positive pole is enclosed by the
contour, so

ik Ar .
Ll e’ par -eVR-E (100)

The homogenous propagation term then becomes

2T

-

= b N c
eVOy(r.z) = —l—fe"‘zdx e Vh Kzfe’"‘z/u(r,z’) dz’
0

+

* . p) -
A [ e dx R Jisn/i - [ eutrzy ! (101)
2n 0

+

. : /12 _ g2 - .
2iBe Pz eV~ B f e"ﬂzlu(r,z/) d7’ .
0

Compare this to the wide-angle split-step PE and recall that the two split-step
approximations &y, and & use the same homogenous propagation term A(u),
with different boundary conditions. As mentioned above, the wide-angle PE
implicitly uses a pressure-release boundary condition. In terms of impedance,
this is equivalent to Z . =0, because the pressure is equal to zero. In this case,
R(x) = -1, and equation (101) agrees exactly with the homogenous propagation
part of the wide-angle split-step PE. Thus, it is concluded from physical
reascning that equation (100) is correct and equation (101) does indeed
repre .ent the homogenous propagation portion of the GFPE.




Adding the nonhomogenous phase correction term yields as the final form for
the GFPE

ak* w e
2%, ;1 ; iAn/ke - & —is!
0 {——fe"‘sz e VP K~fe 2 y(r,z') dz’
27 A

-0

_ iAr
eiA’\/au(r,z)

. . : 2 - K . ./
i fezxsz R(K)elA’vko 2fencz u(r,z’) dZ/ (102)
0

27

-0

+

+

. ; 2 _ g2 ” .
2ipe Pz etVk - P f e 8 y(rz'yd7'} .
0

Note the two differences between the GFPE and wide-angle PE. One is the
correction factor used for the nonhomogenous sound speed profile; the other is
the reflection coefficient. The wide-angle PE assumes a reflection coefficient
R = -1, which produces no amplitude change and a 180° phase shift. The
GFPE reflection coefficient produces angular dependant amplitude and phase
changes and also introduces the surface wave term that results from the zero
of R.

In practice, the first two lines can be implemented via a single FFT/inverse FFT
pair. Note that the GFPE, as with any split-step PE, generates a
two-dimensional (2-D) pressure field, because the FFT gives a profile of
pressure versus height at each range step. It is generally necessary to
interpolate between points to get the field at a specified height.
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5. Model Comparisons

The FFP [13] is another model in wide use in the atmospheric acoustics
community. It is a full-wave model, based on an integral transform of the
reduced wave equation. The FFP transforms with respect to range and
horizontal wavenumber, thereby preserving the boundary condition and
height-dependant sound-speed in the transform domain. As discussed above,
the GFPE is an integral transform in height and vertical wavenumber, but
incorporation of the boundary conditions and height-dependant sound-speed is
not straightforward.

The FFP numerically solves for a height-dependant Green’s function in the
horizontal-wavenumber domain, then transforms to the range domain. Because
of this, the sound-speed profile and ground impedance must be range
independent; there is no place for range dependance in the
horizontal-wavenumber ~domain. Thus, it exactly incorporates the
height-dependant sound-speed, but the cost is range independence.

In contrast, the Green’s function of the GFPE represents a homogenous
atmosphere in the vertical-wavenumber domain; the sound-speed variations are
handled by an approximation in the spacial domain. The advantage is the sound
speed and ground impedance can vary with range.

Figure 8 shows the full 2-D output of the GFPE for the sound-speed profile of
figure 7. Note that this profile is a simulated surface duct, not a measured
profile. Figure 9 gives a comparison between the FFP and the one-dimensional
(1-D) sound pressure level versus range output of the GFPE, again using the
profile of figure 7. The frequency for figures 8 and 9 is 20 Hz and the source
height is 5 m. The blocky appearance of the 2-D 20-Hz output is due to the
large step size of the GFPE. At 20 Hz, with a reference sound speed of around
340 m/s, the wavelength is about 17 m. The step size used by the GFPE was
about 15 wavelengths, which equates to around 255 m. At low frequencies,
there is a tradeoff between speed and resolution in the GFPE.

Figures 10 and 11 show the same results as figures 8 and 9, for a frequency of
100 Hz. Figures 13 and 14 and 15 and 16 represent the GFPE and FFP outputs
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at frequencies of 20 and 100 Hz, respectively, for the upward-refracting profile
of figure 12. As with figure 7, this is an artificial profile. The source height
is again 5 m.

The profile of figure 17 represents an actual surface duct calculated from
temperature and wind measurements. Figures 18 and 19 show the GFPE output
for this profile at 20 and 100 Hz, with a source height of 5 m. Figure 20
shows another profile for an actual surface duct. Figure 21 shows the
corresponding GFPE output at 20 Hz. Note that these profiles actually contain
multiple ducts near the surface, giving rise to a fairly complex sound field.

- Finally, figure 22 shows an actual upper-air duct profile with the GFPE output

at 50 Hz. In figure 23, the source height is 500 m, very close to the local
minimum in the profile. This tends to somewhat focus the sound energy. Also
note the shadow zone at the surface beyond 8 km.

As mentioned in the introduction, a parameter-sensitivity study was conducted
on the GFPE. The technical report for this study contains a detailed discussion
of the input parameters and a much more extensive presentation of the GFPE
output and comparisons with the FFP.
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